Search results

Search for "electron beam induced deposition" in Full Text gives 65 result(s) in Beilstein Journal of Nanotechnology.

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • ., Delftechpark 37j, 2628 XJ, Delft, Netherlands Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands 10.3762/bjnano.15.40 Abstract Structures fabricated using focused electron beam-induced deposition (FEBID) have sloped sidewalls because of the very nature of the deposition process. For
  • distance to the electron beam focus. The interaction of the incident and scattered electrons with the substrate and adsorbed precursor layer causes the dissociation of the precursor molecules. This results in either deposition of solid precursor fragments (focused electron beam-induced deposition, FEBID
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • microscopy (SPM), the tip plays a fundamental role in the achievable lateral resolution of the image. The focused electron-beam induced deposition (FEBID) [34] technique has been adapted to fabricate tips for SPM, for example, to enhance commercial platinum–iridium alloy (Pt-Ir)-coated conductive tips [35
  • the coupling to the transmission line used to measure the microwave resonance. A detailed description of our fabrication is presented, including information about the process parameters used for each layer. We also discuss the fabrication of sharp tips on the cantilever using focused electron beam
  • -induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor’s operation as an electromechanical transducer of force. Keywords: atomic force microscopy; force sensing
PDF
Album
Full Research Paper
Published 15 Feb 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • Iceland, Dunhagi 3, 107 Reykjavík, Iceland Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany Carl Zeiss SMT GmbH, 64380 Roßdorf, Germany 10.3762/bjnano.14.98 Abstract Motivated by the potential of focused-electron-beam-induced deposition (FEBID) in the
  • yielded deposits with high gold content, ranging from 45 to 61 atom % depending on the beam current and on the cleanliness of the substrates surface. Keywords: dissociative electron attachment; dissociative ionization; focused-electron-beam-induced deposition (FEBID); gold deposit; low-energy electrons
  • nanostructures are critical for the enhancement of absorption and controlled scattering of light [10]. Focused-electron-beam-induced deposition (FEBID) is a direct writing method for controlled deposition/fabrication of nanostructures on either flat or nonflat surfaces. It offers excellent shape control and thus
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • electron beam with an organometallic target (e.g., focused electron beam-induced deposition, FEBID) is a promising technique for direct 3D deposition of high-purity materials with minimum residual carbon in the product on the surface [4][5]. The FEBID precursor molecules adsorb and diffuse on the surface
PDF
Album
Full Research Paper
Published 26 Sep 2023

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • nanopatterning of metal surfaces, but it is a complicated and expensive multistep process [8]. Electron beam induced deposition (EBID) is a direct-write lithography technique, which is capable of creating 2D and free-standing 3D nanostructures by using electron irradiation to dissociate volatile precursor
PDF
Album
Full Research Paper
Published 22 Sep 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • (CO)6 in comparison to focused electron beam-induced deposition (FEBID) of this precursor. The DEA and DI experiments are compared to previous work, differences are addressed, and the nature of the underlying resonances leading to the observed DEA processes are discussed in relation to an earlier
  • ; dissociative ionisation; focused electron beam-induced deposition; molybdenum hexacarbonyl; Introduction Studies on Mo-based semiconductor materials for the application as thin films with wafer-scale thickness homogeneity [1] and for solar hydrogen production [2] have attracted interest in the last years. For
  • applications of such types a good and target-oriented fabrication control of molybdenum nanostructures is important. Potentially, this may be achievable by focused electron beam-induced deposition (FEBID). In FEBID of metallic structures, organometallic precursor molecules are generally used as the metal
PDF
Album
Full Research Paper
Published 04 Feb 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • carbon–platinum composite using focused electron beam-induced deposition (FEBID) (Supporting Information File 1, Figure S10). The resistivity of the nanowire–deposit system was estimated to be 2.7 kΩ·cm (Figure 5). This value is significantly higher than the previously reported resistivity for nominally
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • presents a detailed computational protocol for the atomistic simulation of formation and growth of metal-containing nanostructures during focused electron beam-induced deposition (FEBID). The protocol is based upon irradiation-driven molecular dynamics (IDMD), a novel and general methodology for computer
  • irradiation-sensitive resists. The EBL process includes the surface coating with a resist, exposure to the energetic electron beam, and further development of the surface to remove irradiated or non-irradiated material. Another technique, focused electron beam-induced deposition (FEBID) [2][3][4][5], is based
  • nanostructures. The analysis of the simulation results provides spatially resolved relative metal content, height, and growth rate of the deposits, which represents valuable reference data for the experimental characterization of the nanostructures grown by FEBID. Keywords: focused electron beam-induced
PDF
Album
Full Research Paper
Published 13 Oct 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) and electron
  • ” approach for the fabrication of arbitrarily shaped nanostructures [1][2][3][4][5]. The most prominent method within the FEBIP family is electron beam-induced deposition (EBID). In EBID, a focused electron beam is used to locally dissociate adsorbed precursor molecules. Thus, a localized deposit of the non
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands 10.3762/bjnano.12.21 Abstract Seven gold(I) N-heterocyclic carbene (NHC) complexes were synthesized, characterized, and identified as suitable precursors for focused electron beam-induced deposition (FEBID). Several variations on the
  • −. Keywords: Au(I) precursors; focused electron beam-induced deposition (FEBID); gold-NHC; gold precursors; nanofabrication; N-heterocyclic carbene; Introduction Focused electron beam-induced deposition (FEBID) is a nanofabrication technique that allows for the growth of three-dimensional free-standing
  • by positioning free precursor crystals on a heated substrate, and observing their disappearance upon heating. Furthermore, electron beam-induced deposition was observed in close vicinity of the crystals. A small and easy to handle setup mounted on a substrate surface was then developed, resembling a
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • platinum precursors, Pt(CO)2Cl2 and Pt(CO)2Br2, were designed for focused electron beam-induced deposition (FEBID) with the aim of producing platinum deposits of higher purity than those deposited from commercially available precursors. In this work, we present the first deposition experiments in a
  • -dispersive X-ray spectroscopy (EDX); focused electron beam-induced deposition (FEBID); nanofabrication; platinum precursors; scanning electron microscopy (SEM); thermogravimetric analysis (TGA); Introduction Focused electron beam-induced deposition (FEBID) is a direct-write nanopatterning technique. FEBID
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • multibeam electron writers [13] are emerging as novel tools of the future. In addition to resist-based lithography, these are capable of writing patterns by electron beam induced deposition [14]. Focused ion beam tools are also becoming increasingly important. The latter include multi-beam ion beam systems
  • ). 2.2.2 Focused electron beam induced processing. Focused electron beam induced processing (FEBIP) is a high-resolution direct-write nanopatterning method comprising two complementary techniques, namely electron beam induced deposition (EBID) and etching (EBIE). The advantages of FEBIP lie not only in the
  • Electron beam induced deposition. We begin with a brief review of EBID, which addresses the fabrication of dots and lines in SEM, TEM and STM on bulk and thin film substrates, as well as sub-10 nm FEBIP for specialised applications. Since the darkening due to decomposition of surface contaminants was first
PDF
Album
Review
Published 14 Nov 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • tip [29][30]. TERS tips are nowadays produced by the chemical/electrochemical etching of metal wires [31][32][33][34][35], metal coatings of AFM tips [36][37][38], electroless deposition, [39] galvanic displacement [40] or by advanced nanostructuration techniques such as electron beam induced
  • deposition (EBID) and focused ion beam (FIB) milling [41][42][43] (see [30][44] for reviews). Fabrication methods capable of guaranteeing high reproducibility, cost-effectiveness and scalability to industrial production are, however, still not available at present. Metal vapor deposition on AFM tips is
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

  • Lukas Keller and
  • Michael Huth

Beilstein J. Nanotechnol. 2018, 9, 2581–2598, doi:10.3762/bjnano.9.240

Graphical Abstract
  • Lukas Keller Michael Huth Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany 10.3762/bjnano.9.240 Abstract Fabrication of three-dimensional (3D) nanoarchitectures by focused electron beam induced deposition (FEBID) has matured to a level that highly
  • different precursors are presented that validate the effectiveness of the implementation. Keywords: focused electron beam induced deposition; nanofabrication; three-dimensional nanostructures; 1 Introduction New physical effects and functionalities can arise when the third dimension can be accessed at the
  • plating [7], to name a few. In this work, focused electron beam induced deposition [8] (FEBID) is used as a mask-less direct-writing technique that allows for the deposition of structures with a resolution of less than 10 nm in 2D [9][10]. The working principle of FEBID is as follows: A substrate, or any
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • ]. Using electron-beam lithography, it is possible to generate such patterns with very high spatial precision [5]. Focused electron beam induced deposition (FEBID) even serves as a method to deposit 3D nanostructures without the need of masks [6]. A further and very successful method to write gold
PDF
Album
Full Research Paper
Published 04 Sep 2018

Chemistry for electron-induced nanofabrication

  • Petra Swiderek,
  • Hubertus Marbach and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2018, 9, 1317–1320, doi:10.3762/bjnano.9.124

Graphical Abstract
  • beams can be used to induce, on a very small area, chemical reactions of adsorbed precursor molecules that either lead to etching of the underlying surface or deposition of material. The latter additive variant of FEBIP is focused electron beam induced deposition (FEBID), a powerful direct-write
  • different purification protocols. Recent advancements of such processes are reported in this Thematic Series. This includes a laser-assisted electron beam induced deposition (LAEBID) process in which the laser initiates an additional reaction during deposit growth, which may be further enhanced by
PDF
Editorial
Published 30 Apr 2018

Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate

  • Aiden A. Martin and
  • Philip J. Depond

Beilstein J. Nanotechnol. 2018, 9, 1282–1287, doi:10.3762/bjnano.9.120

Graphical Abstract
  • absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material
  • process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials. Keywords: boron oxide; diffusion and growth; electron beam-induced deposition; surface reactions; trimethyl borate; Introduction Applications for boron
  • demonstrated for a wide range of materials is electron beam-induced deposition (EBID) [6]. It avoids instabilities related to thermal- and mass-transport by overcoming the activation barrier for material deposition via electron-induced dissociation of surface-adsorbed precursor molecules into atomic or
PDF
Album
Supp Info
Letter
Published 24 Apr 2018

A novel copper precursor for electron beam induced deposition

  • Caspar Haverkamp,
  • George Sarau,
  • Mikhail N. Polyakov,
  • Ivo Utke,
  • Marcos V. Puydinger dos Santos,
  • Silke Christiansen and
  • Katja Höflich

Beilstein J. Nanotechnol. 2018, 9, 1220–1227, doi:10.3762/bjnano.9.113

Graphical Abstract
  • fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that
  • decomposed by the electron beam and become visible as a darkening of the irradiated area [1]. By introducing a volatile precursor gas into the vacuum chamber [2][3] this focused electron beam induced deposition (FEBID) enables the fabrication of three-dimensional structures with nanometer precision [4]. The
  • by FEBID, typically a metal-organic precursor is used, which frequently results in a carbonaceous matrix with small metal inclusions [8]. Fabrication of copper-containing deposits by electron beam induced deposition was shown with Cu(I) and Cu(II) precursors containing the ligand
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • nanowires (NWs) and square nanorings, which were deposited by focused electron beam induced deposition (FEBID) of a Co carbonyl precursor, are studied using off-axis electron holography (EH), Lorentz transmission electron microscopy (L-TEM) and magnetic force microscopy (MFM). EH shows that NWs deposited
  • at remanence using L-TEM and MFM. Our results confirm the suitability of FEBID for nanofabrication of magnetic structures and demonstrate the versatility of TEM techniques for the study and manipulation of magnetic domain walls in nanostructures. Keywords: focused electron beam induced deposition
  • focused electron beam induced deposition (FEBID) of Co carbonyl (Co2(CO)8). This is a direct-write technique performed in a scanning electron microscope (SEM) equipped with a gas injector system (GIS) [9]. It exploits secondary electron emission resulting from interaction of the primary electron beam with
PDF
Album
Full Research Paper
Published 03 Apr 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • , Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland 10.3762/bjnano.9.78 Abstract Carboxylates constitute an extremely promising class of precursor compounds for the electron beam induced deposition of silver. In this work both silver 2,2-dimethylbutyrate and silver
  • towards the direct electron beam writing of three-dimensional plasmonic device parts from the gas phase. Keywords: carboxylate; electron beam induced deposition; silver; three-dimensional nanostructures; vertical growth rate; Introduction Focused electron beam induced deposition (FEBID) is a resistless
  • . Furthermore, the electron beam induced deposition of silver is challenging. Many potential precursor candidates have to be heated above 100 °C and show extremely low vapor pressures [22][23][24][25]. This is related to the main oxidation state of +1 for silver, which severely limits the possibility to attach
PDF
Album
Letter
Published 08 Mar 2018

Dynamics and fragmentation mechanism of (C5H4CH3)Pt(CH3)3 on SiO2 surfaces

  • Kaliappan Muthukumar,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2018, 9, 711–720, doi:10.3762/bjnano.9.66

Graphical Abstract
  • the initial orientation of the molecule and the distribution of surface active sites. Based on the observations from the simulations and available experiments, we discuss possible dissociation channels of the precursor. Keywords: deposition; dissociation; electron beam induced deposition (EBID
  • ); focused electron beam induced deposition (FEBID); precursor; trimethyl(methylcyclopentadienyl)platinum(IV) ((CH3-C5H4)Pt(CH3)3); Introduction Nanoscale device applications require a growth of regular or specially patterned transition metal nanodeposits. Electron beam induced deposition (EBID), is a size
  • , it can be speculated that a design of suitable precursors for electron beam induced deposition might be more efficient than the use of traditional ALD precursors. With our reaction modeling studies, possible pathways by which the precursor molecule can fragment on SiO2 surfaces were also explored
PDF
Album
Full Research Paper
Published 23 Feb 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the
  • ; focused electron beam induced deposition; heteronuclear FEBID precursors; surface science; Introduction Direct-write technologies using electron beams for nanostructure deposition can surpass the limitations of standard lithography techniques, such as the growth of three-dimensional nanostructures with
  • complex geometries [1][2]. Focused electron beam induced deposition (FEBID) is a powerful technique relying on the decomposition of transiently adsorbed precursors under low vacuum conditions [3]. Different strategies have been used to identify suitable precursors for this process, which relies on
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • latter, reactive chemical species (radicals) and electrons lead to activation of molecules and this process can be controlled well on large scales. One of the most innovative techniques, known as EBID or FEBID (Focused Electron Beam Induced Deposition) [2][3], uses a high energy electron beam that can be
PDF
Album
Full Research Paper
Published 01 Feb 2018

Gas-assisted silver deposition with a focused electron beam

  • Luisa Berger,
  • Katarzyna Madajska,
  • Iwona B. Szymanska,
  • Katja Höflich,
  • Mikhail N. Polyakov,
  • Jakub Jurczyk,
  • Carlos Guerra-Nuñez and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 224–232, doi:10.3762/bjnano.9.24

Graphical Abstract
  • Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland 10.3762/bjnano.9.24 Abstract Focused electron beam induced deposition (FEBID) is a flexible direct-write method to obtain defined structures with a high lateral resolution. In order to use this technique in application fields
  • , silver crystal growth presents a strong dependency on electron dose and precursor refreshment. Keywords: focused electron beam induced deposition; low volatility precursor; silver; Introduction The fabrication of defined patterns in the nanometer regime demands techniques with high lateral resolution
  • and preferably as few processing steps as possible. Therefore, a maskless direct-write method would be favorable in comparison to common resist-based lithography techniques, which require multiple steps and are reaching their lateral resolution limits. Focused electron beam induced deposition (FEBID
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2018
Other Beilstein-Institut Open Science Activities